Hybrid local/cloud style home automation

When I first started automating items in my home I used a local (“on-prem” if you like) point solution for security lighting. This had a connection to an internet service (Google Calendar) but only in a “pull” manner, and only for that specific use-case. As time went on I wanted to enable a broader set of use-cases, some of which required other internet-connected services in both pull and push directions. I experimented with using Octoblu, with the local LightwaveRF controller being connected to it – all the automation therefore was being performed in the cloud. As I looked at adding additional devices (PIR detectors, reed switches, IR blasters, and so on) I encountered a number of failures and delays caused by this reliance on my domestic internet connection and the (at the time) patchy reliability of Octoblu (it’s far more solid now).

My solution was to use a “hybrid” model with a local message broker and set of services running inside the home, and a connection to Octoblu for cases when external services were involved. Overall this means that truly local operations, such as PIRs turning on lights depending on the position of various reed switches, can be kept within my home network with no reliance on my internet connection or any external service. In cases where external stimuli are used (e.g. for connecting Amazon Echo’s smart home stuff) or external actions are required (e.g. sending a text message using Twilio) the bridge between the two worlds allows a message to be forwarded in either direction.

The on-prem piece

homeautopiThe local system is based on a MQTT broker running on a Raspberry Pi. This provides a publish-subscribe messaging system that various services connect to. The broker and many of the services run on the same Raspberry Pi however the broker also listens on a TCP port to allow other Raspberry Pis (and potentially other devices) in the home to join the party. I also have a Redis key-value-pair (KVP) store which is used to store state such as presence information or whether it’s day or night.

As an illustration of how the system is used: the LightwaveRF radio-controlled lighting system is connected via a small node.js service that subscribes to lighting messages (e.g. “Light/Kitchen/Main=on“) and sends the appropriate command to the local LightwaveRF hub which then emits the 433MHz radio command. When I later added a Philips Hue system alongside the LightwaveRF one I created a similar node.js service that also subscribes to lighting messages and makes calls to the Hue hub’s API as necessary. In both cases the services ignore messages about lights they don’t control. This all means other services, such as the PIR detector, or the rules engine, can simply publish a lighting control message without worrying about whether it’s a LightwaveRF, Hue, or (perhaps in the future) other system managed locally or via a cloud service.

Other services that publish and/or subscribe to MQTT messages include:

  • A Bluetooth Low Energy (BLE) advertisement monitor – this is used to determine the presence of absence of various things
  • A Google calendar interface that can update local KVP state, or generate messages, based on scheduled events
  • A GPIO service that enables things like PIRs and push buttons to be attached to Raspberry Pis
  • A timer service that other services and rules can use to provide timeouts, e.g. to turn off PIR-controlled lights after a set delay
  • Plug-ins for the Kodi media player to control Kodi itself as well as IR emitters for nearby TVs and other devices (stay tuned for a blog post on this)

homeautoruleA core part of the whole system is the rules engine. This is a service that subscribes to MQTT messages, implements rules, and publishes MQTT messages as necessary. It doesn’t directly interface to any device. An example of a rule is managing lighting for the basement stairs: inputs to the rule are two PIRs (via the GPIO service), the value of the day/night KVP, and the timeout message from a named timer (from the timer service). If a PIR triggers and it is night (from the KVP) then a lighting message (“Light/Stairs/Basement=on“) is published; when the PIR stops detecting, a timer control message is published (“Timer/basement_stairs_lighting/reset=<time in 60s>“) to start the timer; receipt of the timer’s timeout message causes the rule to emit an “off” lighting message.

The Octoblu bridge

homeautodiagram

So, what if I want to control stuff in the home from somewhere else? Or if I need to send a message to a cloud-connected device or service? That’s where the Octoblu connector comes in. I built a basic connector that runs as a node.js service on the main MQTT Raspberry Pi. This subscribes to a subset of MQTT topics and has the ability to publish arbitrary messages into the on-prem system. It also acts as an Octoblu connector, maintaining a bidirectional connection into Octoblu. This allows my entire home automation world to appear as a thing in Octoblu so I can send messages to it, which leads to MQTT published messages, and receive messages from it, which came from MQTT subscribed messages.

As an example, I can remote-control a light using a button on a web page by connecting an Octoblu “trigger” (a thing that can respond to a HTTPS POST and then emit a message into the Octoblu platform) to the home automation thing, and ensure the message payload includes the right MQTT topic (e.g. “Light/Kitchen/Main“) and message (e.g. “on“). The connector routes this message into my home as a published MQTT message that the LightwaveRF or Hue service will act on. This is the core mechanism I used when connecting my home lighting up to Amazon Echo using an Alexa smart home skill adapter.

In the other direction an on-prem service, such as the rules engine, can send a message to Octoblu just by publishing to a suitable topic (currently this means it has a “Octoblu/” prefix) via the local MQTT broker. An example of this is a security feature that sends me a text message if a particular combination of stimuli are seen. The rules engine publishes a message “Octoblu/alert/<detail>=<status>“, the Octoblu connector receives this via its MQTT subscription and sends it into Octoblu. The Octoblu flow then decides how to process this message which may end up with a call to the Twilio thing to send a text message.

Other examples of using the Octoblu connection include:

  • Sending events for sunrise and sunset, based on pulling data from a weather API (saves having to drill walls to install a light sensor)
  • Routing messages from Alexa skills handlers (these run in the cloud as AWS Lambda functions so I need a way to route the message back across my firewall)

In closing

I’ve ended up with a hybrid-cloud style of IoT management for my home automation, not by design, but by evolution. I find that being able to combine local automation – with its low latency and lack of reliance on external connectivity and services, with a powerful cloud-based automation platform able to send and receive from a variety of cloud/internet services, is a best-of-both-worlds solution.

homeautooctoblu

Advertisements

4 thoughts on “Hybrid local/cloud style home automation”

  1. Very nice, James. Really nice. Hybrid makes total sense – why send data potentially thousands of miles when tens of feet suffice? A local “micro Octoblu” (MicroBlu?!) server variation with a gateway to the Internet for specific cases that need that connectivity would be a very interesting possibility. Could even save up data logs and push them out when possible to maintain security logs remotely. Remote ambient light PIR modules are available; storms can cause much darker skies than what sunrise/sunset predics. I have one that works well, is quite inexpensive and combines multiple functions.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s